
Selected Solutions for Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3

Let ci D cost ofi th operation.

ci D

(

i if i is an exact power of 2;

1 otherwise:

Operation Cost
1 1
2 2
3 1
4 4
5 1
6 1
7 1
8 8
9 1
10 1
:::

:::

n operations cost

n
X

iD1

ci � n C

lg n
X

j D0

2j D n C .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operationD Total cost
operations

< 3 .

By aggregate analysis, the amortized cost per operationD O.1/.

Solution to Exercise 17.2-2

Let ci D cost ofi th operation.

17-2 Selected Solutions for Chapter 17: Amortized Analysis

ci D

(

i if i is an exact power of 2;

1 otherwise:

Charge each operation $3 (amortized costyci).

� If i is not an exact power of 2, pay $1, and store $2 as credit.
� If i is an exact power of 2, pay $i , using stored credit.

Operation Cost Actual cost Credit remaining
1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,
n

X

iD1

yci D 3n.

We know from Exercise 17.1-3 that
n

X

iD1

ci < 3n.

Then we have
n

X

iD1

yci �

n
X

iD1

ci) creditD amortized cost� actual cost� 0.

Since the amortized cost of each operation isO.1/, and the amount of credit never
goes negative, the total cost ofn operations isO.n/.

Solution to Exercise 17.2-3

We introduce a new fieldA:max to hold the index of the high-order1 in A. Initially,
A:max is set to�1, since the low-order bit ofA is at index 0, and there are initially
no 1’s in A. The value ofA:max is updated as appropriate when the counter is
incremented or reset, and we use this value to limit how much of A must be looked
at to reset it. By controlling the cost of RESET in this way, we can limit it to an
amount that can be covered by credit from earlier INCREMENTs.

Selected Solutions for Chapter 17: Amortized Analysis 17-3

INCREMENT.A/

i D 0

while i < A: length andAŒi� == 1

AŒi� D 0

i D i C 1

if i < A: length
AŒi� D 1

// Additions to book’s INCREMENT start here.
if i > A:max

A:max D i

else A:max D �1

RESET.A/

for i D 0 to A:max
AŒi� D 0

A:max D �1

As for the counter in the book, we assume that it costs $1 to flipa bit. In addition,
we assume it costs $1 to updateA:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit
that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during
incrementing.

In addition, we’ll use $1 to pay to updatemax, and ifmax increases, we’ll place an
additional $1 of credit on the new high-order 1. (Ifmax doesn’t increase, we can
just waste that $1—it won’t be needed.) Since RESETmanipulates bits at positions
only up toA:max, and since each bit up to there must have become the high-order 1
at some time before the high-order 1 got up toA:max, every bit seen by RESET

has $1 of credit on it. So the zeroing of bits ofA by RESETcan be completely paid
for by the credit stored on the bits. We just need $1 to pay for resettingmax.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufficient, so the
sequence ofn INCREMENT and RESEToperations takesO.n/ time.

