Selected Solutionsfor Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3

Let¢; = cost ofith operation.

)i if i is an exact power of 2
)1 otherwise

Ci

Operation Cost

T Boo~NoO~wWN R
R PRPORRPRRPARNPR

n operations cost

n lgn
Zci §n+Z2j =n+Q2n—1)<3n.
i=1 j=0

(Note: Ignoring floor in upper bound of 27.)

Total cost

Average cost of operatiog ——
operations

By aggregate analysis, the amortized cost per operati@n(1).

Solution to Exercise 17.2-2

Letc¢; = cost ofith operation.

17-2

Sdlected Solutions for Chapter 17: Amortized Analysis

i if i is an exact power of 2
1 otherwise.

(&

Charge each operation $3 (amortized @@}t

« If i is not an exact power of 2, pay $1, and store $2 as credit.
» If i is an exact power of 2, pay Jusing stored credit.

Operation Cost Actual cost Credit remaining

1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9

n

Since the amortized cost is $3 per operatidn,é; = 3n.

i=1

We know from Exercise 17.1-3 th{ ¢ < 3n.

i=1

Then we havei:a > Z ¢; = credit= amortized cost actual cost> 0.

i=1 i=1
Since the amortized cost of each operatio®{d), and the amount of credit never
goes negative, the total costiobperations i< (n).

Solution to Exercise 17.2-3

We introduce a new field . max to hold the index of the high-ordérin A. Initially,
A.max s set to—1, since the low-order bit oft is at index 0, and there are initially
no 1's in A. The value of4.max is updated as appropriate when the counter is
incremented or reset, and we use this value to limit how méichmust be looked

at to reset it. By controlling the cost ofHRETIn this way, we can limit it to an
amount that can be covered by credit from earlleCREMENTS.

Sdlected Solutions for Chapter 17: Amortized Analysis 17-3

INCREMENT(A)
i=0
whilei < A.lengthandA[i] ==
Ali] =0
i=i+1
if i < A.length
Alil =1
/I Additions to book’'s NCREMENT start here.
ifi > A.max
A.max = i
gsed.max = —1

RESET(A)

fori = 0to A.max
Ali] =0
A.max = —1

As for the counter in the book, we assume that it costs $1 tafbji. In addition,
we assume it costs $1 to updatemax.

Setting and resetting of bits b)wCREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will baged on the bit
that is set to 1 as credit; the credit on each 1 bit will pay wetdhe bit during
incrementing.

In addition, we’ll use $1 to pay to updateax, and if max increases, we'll place an
additional $1 of credit on the new high-order 1. ifééx doesn't increase, we can
just waste that $1—it won’t be needed.) SincedR Tmanipulates bits at positions
only up toA. max, and since each bit up to there must have become the higih-brde
at some time before the high-order 1 got up4omax, every bit seen by RSET
has $1 of credit on it. So the zeroing of bits4by RESETcan be completely paid
for by the credit stored on the bits. We just need $1 to paydsettingmax.

Thus charging $4 for eacincREMENT and $1 for each RseTis sufficient, so the
sequence of INCREMENT and RESET operations take®(n) time.

